Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.523
Filtrar
1.
Methods Mol Biol ; 2788: 3-18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656505

RESUMEN

Carotenoids are the natural pigments available in nature and exhibit different colors such as yellow, red, and orange. These are a class of phytonutrients that have anti-cancer, anti-inflammatory, anti-oxidant, immune-modulatory, and anti-aging properties. These were used in food, pharmaceutical, nutraceutical, and cosmetic industries. They are divided into two classes: carotenes and xanthophylls. The carotenes are non-oxygenated derivatives and xanthophylls are oxygenated derivatives. The major source of carotenoids are vegetables, fruits, and tissues. Carotenoids also perform the roles of photoprotection and photosynthesis. In addition to the roles mentioned above, they are also involved and act as precursor molecules for the biosynthesis of phytohormones such as strigolactone and abscisic acid. This chapter briefly introduces carotenoids and their extraction method from plant tissue. Proposed protocol describes the extraction of carotenoid using solvents chloroform and dichloromethane. Reverse-phase HPLC can be performed with C30 columns using gradient elution. The column C30 is preferred to the C18 column because the C30 column has salient features, which include selective nature in the separation of structural isomers and hydrophobic, long-chain compounds, and shows the best compatibility with highly aqueous mobile phases. A complete pipeline for the extraction of carotenoids from plant tissue is given in the present protocol.


Asunto(s)
Carotenoides , Carotenoides/aislamiento & purificación , Carotenoides/química , Carotenoides/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Plantas/química , Plantas/metabolismo , Extractos Vegetales/química
2.
Food Chem (Oxf) ; 8: 100204, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38659653

RESUMEN

In this work, we used Raman spectroscopy to identify compounds present at different maturation stages of the exocarp of scarlet eggplant and two banana cultivars, 'prata' and 'nanica'. Raman spectral analyses of both fruits showed bands attributed to phenolic acids, flavonoids, carotenoids, and fatty acids. During the scarlet eggplant's maturation process, Raman spectral profile changes are mainly observed in the carotenoid content rather than flavonoids. Furthermore, it is suggested that naringenin chalcone together with ß-carotene determines the orange-red color of the ripe stage. Variations in chemical composition among the maturation stages of bananas were observed predominantly in 'prata' when compared to 'nanica'. In contrast to scarlet eggplant changes in the spectral profile were more evident in the content of the flavonoid/phenolic acids. The in situ analysis was demonstrated to be useful as a guide in selecting bioactive compounds on demand from low-cost horticultural waste.

4.
Biology (Basel) ; 13(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38666888

RESUMEN

Mucor circinelloides WJ11 is a lipid-producing strain with industrial potential. A holistic approach using gene manipulation and bioprocessing development has improved lipid production and the strain's economic viability. However, the systematic regulation of lipid accumulation and carotenoid biosynthesis in M. circinelloides remains unknown. To dissect the metabolic mechanism underlying lipid and carotenoid biosynthesis, transcriptome analysis and reporter metabolites identification were implemented between the wild-type (WJ11) and ΔcarRP WJ11 strains of M. circinelloides. As a result, transcriptome analysis revealed 10,287 expressed genes, with 657 differentially expressed genes (DEGs) primarily involved in amino acid, carbohydrate, and energy metabolism. Integration with a genome-scale metabolic model (GSMM) identified reporter metabolites in the ΔcarRP WJ11 strain, highlighting metabolic pathways crucial for amino acid, energy, and nitrogen metabolism. Notably, the downregulation of genes associated with carotenoid biosynthesis and acetyl-CoA generation suggests a coordinated relationship between the carotenoid and fatty acid biosynthesis pathways. Despite disruptions in the carotenoid pathway, lipid production remains stagnant due to reduced acetyl-CoA availability, emphasizing the intricate metabolic interplay. These findings provide insights into the coordinated relationship between carotenoid and fatty acid biosynthesis in M. circinelloides that are valuable in applied research to design optimized strains for producing desired bioproducts through emerging technology.

5.
Curr Issues Mol Biol ; 46(4): 3108-3121, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38666925

RESUMEN

Farnesyl pyrophosphate synthase (FPPS) catalyzes the synthesis of C15 farnesyl diphosphate (FPP) from C5 dimethylallyl diphosphate (DMAPP) and two or three C5 isopentenyl diphosphates (IPPs). FPP is an important precursor for the synthesis of isoprenoids and is involved in multiple metabolic pathways. Here, farnesyl pyrophosphate synthase from Sporobolomyces pararoseus NGR (SpFPPS) was isolated and expressed by the prokaryotic expression system. The SpFPPS full-length genomic DNA and cDNA are 1566 bp and 1053 bp, respectively. This gene encodes a 350-amino acid protein with a predicted molecular mass of 40.33 kDa and a molecular weight of 58.03 kDa (40.33 kDa + 17.7 kDa), as detected by SDS-PAGE. The function of SpFPPS was identified by induction, purification, protein concentration and in vitro enzymatic activity experiments. Structural analysis showed that Y90 was essential for chain termination and changing the substrate scope. Site-directed mutation of Y90 to the smaller side-chain amino acids alanine (A) and lysine (K) showed in vitro that wt-SpFPPS catalyzed the condensation of the substrate DMAPP or geranyl diphosphate (GPP) with IPP at apparent saturation to synthesize FPP as the sole product and that the mutant protein SpFPPS-Y90A synthesized FPP and C20 geranylgeranyl diphosphate (GGPP), while SpFPPS-Y90K hydrolyzed the substrate GGPP. Our results showed that FPPS in S. pararoseus encodes the SpFPPS protein and that the amino acid substitution at Y90 changed the distribution of SpFPPS-catalyzed products. This provides a baseline for potentially regulating SpFPPS downstream products and improving the carotenoid biosynthesis pathway.

6.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667769

RESUMEN

Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.


Asunto(s)
Productos Biológicos , Microalgas , Productos Biológicos/química , Humanos , Animales , Suplementos Dietéticos
7.
Mar Drugs ; 22(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667783

RESUMEN

The nutritional and bioactive value of seaweeds is widely recognized, making them a valuable food source. To use seaweeds as food, drying and thermal treatments are required, but these treatments may have a negative impact on valuable bioactive compounds. In this study, the effects of dehydration, rehydration, and thermal treatment on the bioactive compounds (carotenoids, phycobiliproteins, total phenolic content (TPC), total flavonoids content (TFC)), antioxidant (ABTS and DPPH radical scavenging activities) and anti-Alzheimer's (Acetylcholinesterase (AchE) inhibitory activities, and color properties of Porphyra umbilicalis and Porphyra linearis seaweeds were evaluated. The results revealed significant reductions in carotenoids, TPC, TFC, and antioxidant activities after the seaweeds' processing, with differences observed between species. Thermal treatment led to the most pronounced reductions in bioactive compound contents and antioxidant activity. AchE inhibitory activity remained relatively high in all samples, with P. umbilicalis showing higher activity than P. linearis. Changes in color (ΔE) were significant after seaweeds' dehydration, rehydration and thermal treatment, especially in P. umbilicalis. Overall, optimizing processing methods is crucial for preserving the bioactive compounds and biological activities of seaweeds, thus maximizing their potential as sustainable and nutritious food sources or as nutraceutical ingredients.


Asunto(s)
Antioxidantes , Inhibidores de la Colinesterasa , 60578 , Fenoles , Porphyra , Algas Marinas , Porphyra/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Algas Marinas/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/aislamiento & purificación , Fenoles/farmacología , Fenoles/aislamiento & purificación , Fenoles/análisis , Flavonoides/farmacología , Carotenoides/farmacología , Desecación , Calor , Ficobiliproteínas/farmacología , Acetilcolinesterasa/metabolismo
8.
Mar Drugs ; 22(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667784

RESUMEN

Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.


Asunto(s)
Antineoplásicos , Antioxidantes , Carotenoides , Neoplasias , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Carotenoides/farmacología , Carotenoides/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Animales , Archaea/metabolismo
9.
Int J Biol Macromol ; 267(Pt 2): 131200, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38574910

RESUMEN

Bioactive compounds into extruded foods enhance their nutritional value but they are heat and shear labile and prone to oxidation. This study was aimed to examine the impacts of distinct encapsulation methods on the stability of carotenoids under typical extrusion conditions. The study presents innovative encapsulation methods and investigates the protection efficacy of carotenoids degradation, as well as the effects on the physicochemical characteristics of carotenoid-rich products. Thus, spray drying, spray chilling, and their combination were compared based on their ability to protect carotenoids. Processing temperatures were 110 °C and 140 °C, and shear rates 500 and 2000 1/s. Carotenoid retention was determined, ß- and α-carotene retention ranged from 17 to 44 % and 18 to 48 %, respectively. Upon storage at room temperature, the carotenoid content was stable for 15 days, followed by a marked reduction after 30 days. Extrudates enriched microparticles produced by spray chilling and the combined methods exhibited higher carotenoid protection during storage. They also showed better quality attributes, notably bulk density, high water absorption index, color properties, and carotenoid retention. These findings suggest that encapsulation can protect carotenoids during extrusion, and the protection can be tailored to optimize the attributes of the final products.

10.
Acta Pharm Sin B ; 14(4): 1878-1891, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572115

RESUMEN

Crocus sativus (saffron) is a globally autumn-flowering plant, and its stigmas are the most expensive spice and valuable herb medicine. Crocus specialized metabolites, crocins, are biosynthesized in distant species, Gardenia (eudicot) and Crocus (monocot), and the evolution of crocin biosynthesis remains poorly understood. With the chromosome-level Crocus genome assembly, we revealed that two rounds of lineage-specific whole genome triplication occurred, contributing important roles in the production of carotenoids and apocarotenoids. According to the kingdom-wide identification, phylogenetic analysis, and functional assays of carotenoid cleavage dioxygenases (CCDs), we deduced that the duplication, site positive selection, and neofunctionalization of Crocus-specific CCD2 from CCD1 members are responsible for the crocin biosynthesis. In addition, site mutation of CsCCD2 revealed the key amino acids, including I143, L146, R161, E181, T259, and S292 related to the catalytic activity of zeaxanthin cleavage. Our study provides important insights into the origin and evolution of plant specialized metabolites, which are derived by duplication events of biosynthetic genes.

11.
J Nutr Sci ; 13: e11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572367

RESUMEN

This study aimed to evaluate the association between dietary carotenoid intake and periodontitis in diabetic patients. Data on diabetic patients were collected from the National Health and Nutrition Examination Survey (NHANES) 2009-2014 for this cross-sectional study. Dietary intake of carotenoids was assessed through the first 24-hour dietary recall interview. Full-mouth periodontal examinations were conducted by trained dental examiners. Subgroup analysis was conducted in terms of age, gender, the number of missing teeth, cardiovascular disease, smoking, and anti-diabetic drugs. Totally 1914 diabetic patients were included, with 1281 (66.93%) in the periodontitis group. After adjusting for age, gender, race, education, smoking, dental implants, hepatitis, and the number of missing teeth, α-carotene intake ≥55.82 mcg was associated with lower odds of periodontitis than α-carotene intake <55.82 mcg [OR = 0.70, 95% CI: 0.53-0.91, P = 0.010]; lutein and zeaxanthin intake ≥795.95 mcg was associated with decreased odds of periodontitis than lutein and zeaxanthin intake <795.95 mcg (OR = 0.75, 95%CI: 0.57-0.98, P = 0.039). The association between carotenoid intake and periodontitis varied across different subpopulations. In diabetes, dietary intake of α-carotene and lutein and zeaxanthin was inversely associated with the odds of periodontitis, which may facilitate clinical periodontitis management.


Asunto(s)
Diabetes Mellitus , Periodontitis , Humanos , Luteína , Encuestas Nutricionales , Zeaxantinas , Estudios Transversales , beta Caroteno , Carotenoides , Periodontitis/complicaciones
12.
Food Chem ; 449: 139184, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38579651

RESUMEN

Fresh sea urchin (Paracentrotus lividus) gonads are a delicacy with short seasonal availability, very often heterogeneous in size and intrinsic characteristics. This study aimed to valorise this resource through the preparation of canned products (with/without Porphyra spp.) and evaluate their physicochemical and sensory quality (3-12 months). Canning contributed to a decrease in protein, K and most carotenoids contents; and a concentration of lipids, ash, Na and Se levels. A simulated 12-month ageing led to decrease the protein and ß-carotene contents; and the Na and lutein levels concentration. The macroalgae addition resulted in an orange, darker and less soft product, with higher carbohydrates, Na, Se and carotenoids contents. A 25 g-dose contributes to significant daily intakes of protein (8-9%), EPA+DHA (47-53%), I (35-62%) and Se (30-47%). The products were commercially stable/sterile and had good sensory acceptance. Overall, canning constitutes a strategy to provide a nutritionally balanced product available all year-round.

13.
Int J Food Microbiol ; 417: 110690, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38581832

RESUMEN

Soy sauce is a traditional condiment that undergoes microbial fermentation of various ingredients to achieve its desired color, scent, and flavor. Sporidiobolus pararoseus, which is a type of Rhodocerevisiae, shows promising potential as a source of lipids, carotenoids, and enzymes that can enrich the taste and color of soy sauce. However, there is currently a lack of systematic and comprehensive studies on the functions and mechanisms of action of S. pararoseus during soy sauce fermentation. In this review, it is well established that S. pararoseus produces lipids that are abundant in unsaturated fatty acids, particularly oleic acid, as well as various carotenoids, such as ß-carotene, torulene, and torularhodin. These pigments are synthesized through the mevalonic acid pathway and possess remarkable antioxidant properties, acting as natural colorants. The synthesis of carotenoids is stimulated by high salt concentrations, which induces oxidative stress caused by NaCl. This stress further activates crucial enzymes involved in carotenoid production, ultimately leading to pigment formation. Moreover, S. pararoseus can produce high-quality enzymes that aid in the efficient utilization of soy sauce substrates during fermentation. Furthermore, this review focused on the impact of S. pararoseus on the color and quality of soy sauce and comprehensively analyzed its characteristics and ingredients. Thus, this review serves as a basis for screening high-quality oleaginous red yeast strains and improving the quality of industrial soy sauce production through the wide application of S. pararoseus.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38649008

RESUMEN

This work aims to understand better the mechanism of cellular processes accompanying the activation of human T cells and to develop a novel, fast, label-free approach to identify molecular biomarkers for this process. Non-activated T-cell activation is a key method in cancer immunotherapy and involves the isolation of T-cells from a patient to perform a specific genetic modification. The standard methodology for confirming the activation state of T cells is based on flow cytometry, antibodies, and target antigens that provide high specificity detection but may show background staining or specific secondary antibody reactions. Here, we evaluated the potential of Raman-based molecular imaging in differentiating non-activated and activated human T cells. Confocal Raman microscopy was performed on activated T cells using chemometrics to obtain comprehensive molecular information, while Stimulated Raman Scattering imaging was used to quickly provide high-resolution images of selected cellular components of activated and non-activated cells. For the first time, carotenoids, lipids, and proteins were shown to be important biomarkers of T-cell activation. We found that T-cell activation was accompanied by lipid accumulation and loss of carotenoid content. Our findings on the biochemical, morphological, and structural changes associated with activated mature T cells provide insights into the molecular changes that occur during therapeutic manipulation of the immune response. The methodology for identifying activated T cells is based on a novel imaging method and supervised and unsupervised chemometrics. It unambiguously identifies specific and unique molecular changes without the need for staining, fixation, or any other sample preparation.

15.
Poult Sci ; 103(6): 103750, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38652952

RESUMEN

Yolk carotenoid profile reflects the hen diet when corn grain is the only source of carotenoids, but corn origin and processing may affect carotenoid utilization. In the present study, 2 commercial dent corn hybrids differing in grain hardness (soft- and hard-type) were dried at low (40°C) and high (85°C) temperature and ground through a 5- and 9-mm sieve to investigate their effects on carotenoid bioavailability in laying hens. With 3 hens per cage, 168 Lohmann Brown laying hens were allocated to 8 dietary treatments (2 hybrids × 2 drying temperatures × 2 grinding sieves) in a completely randomized design (8 treatments × 7 cages). The trial lasted 8 wk, during which eggs were collected for analysis every 3 d until carotenoid content stabilized, and then once a week until the end of the experiment. The carotenoid profile of the experimental diets and yolks was analyzed using an HPLC method and deposition efficiency was calculated based on carotenoid contents, yolk weight, egg production and diet intake. The deposition efficiency for lutein, zeaxanthin, α- and ß-cryptoxanthin, and ß-carotene averaged 27.37, 18.67, 6.29, 3,32, and 0.94%, respectively. As expected, the tested hybrids highly affected the carotenoid content in egg yolk due to their differences in carotenoid profile. Interestingly, hard- and soft-type hybrids differed in the deposition efficiency for all individual carotenoids but not for the total carotenoids. High grain drying temperature tended to increase the bioavailability of lutein and zeaxanthin in both hybrids. For the hard-type hybrid, the content of ß-carotene in egg yolk was higher when grains were dried at a high temperature, while the opposite response was found in the soft-type hybrid. The effect of grinding sieve size was important for the zeaxanthin bioavailability in the soft-type hybrid only. In conclusion, our findings showed that corn hybrid had a primary influence on the carotenoid content in the yolks of laying hens, but grain processing may change the bioavailability of carotenoids.

16.
Food Chem ; 450: 139253, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653056

RESUMEN

Mango is a good source of carotenoids for use in food, cosmetic, and pharmaceutical products because of their organoleptic and health-promoting properties. Safe and sustainable methods for their extraction is required. The present investigation was aimed to study concentration and carotenoid profile of 'Kent' mango pulp through a conventional extraction (CE) and ultrasound-assisted extraction (UAE) using traditional solvents (tetrahydrofuran-THF and diethyl ether: petroleum ether-DE:PE) and green solvents (GS) (2-metiltetrahydrofuran, 2 m-THF; cyclopentyl methyl ether, CPME). Mango showed (µg/g d.w.) ß-carotene (29.4), zeaxanthin (1.28), ß-cryptoxanthin (2.8), phytoene (18.68) and phytofluene (7.45) in a CE using DE:PE. Similar results were obtained applying DE:PE in UAE and GS in a CE, so CPME and 2-mTHF seem suitable solvents to replace DE:PE in CE. The yield of total carotenes, xanthophylls and carotenoids using GS combined with UAE was lower than with CE, but important enough to be used as a sustainable procedure for obtaining carotenoids from mango pulp.

17.
J Agric Food Chem ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613500

RESUMEN

Citrus fruits are among the most economically important crops in the world. In the global market, the Citrus peel is often considered a byproduct but substitutes an important phenotypic characteristic of the fruit and a valuable source of essential oils, flavonoids, carotenoids, and phenolic acids with variable concentrations. The Mediterranean basin is a particularly dense area of autochthonous genotypes of Citrus that are known for being a source of healthy foods, which can be repertoires of valuable genes for molecular breeding with the focus on plant resistance and quality improvement. The scope of this study was to characterize and compare the main phenotypic parameters (i.e., peel thickness, fruit volume, and area) and levels of bioactive compounds in the peel of fruits from the local germplasm of Citrus in Greece, to assess their chemodiversity regarding their polyphenolic, volatile, and carotenoid profiles. A targeted liquid chromatographic approach revealed hesperidin, tangeretin, narirutin, eriocitrin, and quercetin glycosides as the major polyphenolic compounds identified in orange, lemon, and mandarin peels. The content of tangeretin and narirutin followed the tendency mandarin > orange > lemon. Eriocitrin was a predominant metabolite of lemon peel, following its identification in lower amounts in mandarin and at least in the orange peel. For these citrus-specific metabolites, high intra- but also interspecies chemodiversity was monitored. Significant diversity was found in the essential oil content, which varied between 1.2 and 3% in orange, 0.2 and 1.4% in mandarin, and 0.9 and 1.9% in lemon peel. Limonene was the predominant compound in all Citrus species peel essential oils, ranging between 88 and 93% among the orange, 64 and 93% in mandarin, and 55 and 63% in lemon cultivars. Carotenoid analysis revealed different compositions among the Citrus species and accessions studied, with ß-cryptoxanthin being the most predominant metabolite. This large-scale metabolic investigation will enhance the knowledge of Citrus peel secondary metabolite chemodiversity supported by the ample availability of Citrus genetic resources to further expand their exploitation in future breeding programs and potential applications in the global functional food and pharmaceutical industries.

18.
Phytother Res ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634408

RESUMEN

Lutein is a naturally occurring carotenoid synthesized by plants and algae that has a beneficial effect on several biological processes and associated ailments. Its immediate application is in ophthalmology, where it significantly lowers the incidences of age-related macular degeneration (AMD). It also has anti-inflammatory action, treatment of diabetic retinopathy, and cataracts, and enhancement of visual contrast. To critically assess lutein biosynthesis, therapeutic applicability, and market research literature. We have discussed its theoretical frameworks, experimental evidence, limitations, as well as clinical trial results, and future research prospects. The literature for this review article was mined and compiled by collecting and analyzing articles from several databases, including ScienceDirect, Google Scholar, PubMed, Wiley Online Library, Patentscope, and ClinicalTrials.gov published until March 30, 2022. Patent publications were identified using the search terms like IC:(C07C67/56) AND EN_AB:(lutein) OR EN_TI:(lutein) OR EN_AB:(extraction) OR EN_TI:(process). According to the literature, lutein is an essential nutrient given that it cannot be synthesized in the human body and acts as an antioxidant, affecting AMD, diabetic retinopathy, Rheumatic diseases, inflammation, and cancer. Due to inadequate production and laborious extraction, lutein is expensive despite its high demand and applicability. Market research predicts a 6.3% compound annual growth rate for lutein by 2032. Optimizing lutein extraction for high yield and purity is necessary. Lutein has proven applicability in various ailments as well as cosmetics that can be developed as a candidate drug for various diseases discussed in the review.

19.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612498

RESUMEN

Sericin derived from the white cocoon of Bombyx mori has been attracting more attention for its utilization in food, cosmetics, and biomedicine. The potential health benefits of natural carotenoids for humans have also been well-established. Some rare strains of Bombyx mori (B. mori) produce yellow-red cocoons, which endow a potential of natural carotenoid-containing sericin. We hypothesized that natural carotenoid-containing sericin from yellow-red cocoons would exhibit better properties compared with white cocoon sericin. To investigate the physicochemical attributes of natural carotenoid-containing sericin, we bred two silkworm strains from one common ancestor, namely XS7 and XS8, which exhibited different cocoon colors as a result of the inconsistent distribution of lutein and ß-carotene. Compared with white cocoon sericin, the interaction between carotenoids and sericin molecules in carotenoid-containing sericin resulted in a unique fluorescence emission at 530, 564 nm. The incorporation of carotenoids enhanced the antibacterial effect, anti-cancer ability, cytocompatibility, and antioxidant of sericin, suggesting potential wide-ranging applications of natural carotenoid-containing sericin as a biomass material. We also found differences in fluorescence characteristics, antimicrobial effects, anti-cancer ability, and antioxidants between XS7 and XS8 sericin. Our work for the first time suggested a better application potential of natural carotenoid-containing sericin as a biomass material than frequently used white cocoon sericin.


Asunto(s)
Bombyx , Sericinas , Humanos , Animales , Carotenoides/farmacología , Sericinas/farmacología , Antioxidantes/farmacología , beta Caroteno/farmacología
20.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612712

RESUMEN

Tetraselmis chuii is an EFSA-approved novel food and dietary supplement with increasing use in nutraceutical production worldwide. This study investigated the neuroprotective potential of bioactive compounds extracted from T. chuii using green biobased solvents (ethyl acetate, AcOEt, and cyclopentyl methyl ether, CPME) under pressurized liquid extraction (PLE) conditions and supercritical fluid extraction (SFE). Response surface optimization was used to study the effect of temperature and solvent composition on the neuroprotective properties of the PLE extracts, including anticholinergic activity, reactive oxygen/nitrogen species (ROS/RNS) scavenging capacity, and anti-inflammatory activity. Optimized extraction conditions of 40 °C and 34.9% AcOEt in CPME resulted in extracts with high anticholinergic and ROS/RNS scavenging capacity, while operation at 180 °C and 54.1% AcOEt in CPME yielded extracts with potent anti-inflammatory properties using only 20 min. Chemical characterization revealed the presence of carotenoids (neoxanthin, violaxanthin, zeaxanthin, α- and ß-carotene) known for their anti-cholinesterase, antioxidant, and anti-inflammatory potential. The extracts also exhibited high levels of omega-3 polyunsaturated fatty acids (PUFAs) with a favorable ω-3/ω-6 ratio (>7), contributing to their neuroprotective and anti-inflammatory effects. Furthermore, the extracts were found to be safe to use, as cytotoxicity assays showed no observed toxicity in HK-2 and THP-1 cell lines at or below a concentration of 40 µg mL-1. These results highlight the neuroprotective potential of Tetraselmis chuii extracts, making them valuable in the field of nutraceutical production and emphasize the interest of studying new green solvents as alternatives to conventional toxic solvents.


Asunto(s)
Chlorophyta , Ácidos Grasos Omega-3 , Microalgas , Especies Reactivas de Oxígeno , Antagonistas Colinérgicos , Suplementos Dietéticos , Antiinflamatorios/farmacología , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...